ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ПРОФЕССИОНАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ «НИЖЕГОРОДСКИЙ ПРОМЫШЛЕННО-ТЕХНОЛОГИЧЕСКИЙ ТЕХНИКУМ»

Комплект контрольно-оценочных средств по учебной дисциплине ПД.01ИНФОРМАТИКА

основной профессиональной образовательной программы по специальности

10.02.01 Организация и технология защиты информации

Н.НОВГОРОД 2020г. Контрольно - оценочные средства по учебному предмету «Информатика» разработаны на основе Федерального государственного образовательного стандарта среднего общего образования (далее — $\Phi\Gamma$ OC), а также Примерной программы общеобразовательной учебной дисциплины «Информатика» для специальностей среднего профессионального образования (далее — СПО): 10.02.01 Организация и технология защиты информации.

Организация-разработчик: ГБПОУ «НПТТ»

Содержание

- 1.Паспорт комплекта контрольно-оценочных средств
- 2. Задания для текущего контроля, критерии оценки, эталоны ответов
- 3. Задания для промежуточной аттестации критерии оценки, эталоны ответов

1 ПАСПОРТ КОМПЛЕКТА КОНТРОЛЬНО-ОЦЕНОЧНЫХ СРЕДСТВ

1.1 Область применения

Комплект контрольно-оценочных средств (далее КОС) предназначен для проверки результатов освоения учебной дисциплины «ПД.1 Информатика» основной профессиональной образовательной программы по специальности СПО 10.02.01 Организация и технология защиты информации

КОС включает контрольные материалы для проведения текущего контроля и промежуточной аттестации в форме дифференцированного зачета.

1.2 Результаты изучения учебной дисциплины

Освоение содержания учебной дисциплины «Информатика» обеспечивает достижение студентами следующих результатов:

• личностных:

- Л1- чувство гордости и уважения к истории развития и достижениям отечествен- ной информатики в мировой индустрии информационных технологий;
 - Л2- осознание своего места в информационном обществе;
- ЛЗ готовность и способность к самостоятельной и ответственной творческой деятельности с использованием информационно-коммуникационных технологий;
- Л4- умение использовать достижения современной информатики для повышения собственного интеллектуального развития в выбранной профессиональной деятельности, самостоятельно формировать новые для себя знания в профессиональной области, используя для этого доступные источники информации;
- Л5- умение выстраивать конструктивные взаимоотношения в командной работе по решению общих задач, в том числе с использованием современных средств сетевых коммуникаций; умение управлять своей познавательной деятельностью, проводить самооценку уровня собственного интеллектуального развития, в том числе с использованием современных электронных образовательных ресурсов;
- Л6 умение выбирать грамотное поведение при использовании разнообразных средств информационно-коммуникационных технологий как в профессиональной деятельности, так и в быту;
- Л7- готовность к продолжению образования и повышению квалификации в избранной профессиональной деятельности на основе развития личных информационно-коммуникационных компетенций;

• метапредметных:

- M1- умение определять цели, составлять планы деятельности и определять средства, необходимые для их реализации;
- M2- использование различных видов познавательной деятельности для решения информационных задач, применение основных методов познания (наблюдения, описания, измерения, эксперимента) для организации учебно-исследовательской и проектной деятельности с использованием информационно-коммуникационных технологий;
- M3 использование различных информационных объектов, с которыми возникает необходимость сталкиваться в профессиональной сфере в изучении явлений и процессов;
- М4- использование различных источников информации, в том числе электронных библиотек, умение критически оценивать и интерпретировать информацию, получаемую из различных источников, в том числе из сети Интернет; умение анализировать и представлять информацию, данную в электронных форматах на компьютере в различных видах;
- M5- умение использовать средства информационно-коммуникационных технологий в решении когнитивных, коммуникативных и организационных задач с соблюдением требований эргономики, техники безопасности, гигиены, ресурсосбережения, правовых и этических норм, норм информационной безопасности;

M6- умение публично представлять результаты собственного исследования, вести дискуссии, доступно и гармонично сочетая содержание и формы представляемой информации средствами информационных и коммуникационных технологий;

• предметных:

- П1- сформированность представлений о роли информации и информационных процессов в окружающем мире;
- П2- владение навыками алгоритмического мышления и понимание методов формального описания алгоритмов, владение знанием основных алгоритмических конструкций, умение анализировать алгоритмы;
- П3- использование готовых прикладных компьютерных программ по профилю подготовки;
 - П4- владение способами представления, хранения и обработки данных на компьютере;
- П5 владение компьютерными средствами представления и анализа данных в электронных таблицах;
- П6- сформированность представлений о базах данных и простейших средствах управления ими;
- П7- сформированность представлений о компьютерно-математических моделях и необходимости анализа соответствия модели и моделируемого объекта (процесса);
- П8- владение типовыми приемами написания программы на алгоритмическом языке для решения стандартной задачи с использованием основных конструкций языка программирования;
- П9- сформированность базовых навыков и умений по соблюдению требований техники безопасности, гигиены и ресурсосбережения при работе со средства- ми информатизации;
- П10- понимание основ правовых аспектов использования компьютерных программ и прав доступа к глобальным информационным сервисам;
- П11- применение на практике средств защиты информации от вредоносных про- грамм, соблюдение правил личной безопасности и этики в работе с информацией и средствами коммуникаций в Интернете.

3. Распределение оценивания результатов обучения по видам контроля

Таблица 1

Контроль и оценка освоения учебной дисциплины по темам (разделам)

Элемент учебной дисциплины	Текущий	контроль	Промежуточная аттестация				
элемент учений дисциплины	Форма контроля	Проверяемые Л, М, П	Форма контроля	Проверяемые Л, М, П			
Тема 1 Информационная деятель- ность человека	Устный опрос, Тест1	Л2, Л4, Л6, Л7, М1,М3, М6, П1, П10	Дифференцированн ый зачет	Л1-Л7,М1-М6, П1- П11			
Тема 2 Информация и информаци- онные процессы	Устный опрос, Тест2, Проверочная работа	Л2, Л4, Л7, М1, М5, М6, П2, П5, П7, П8					
Тема 3 Средства информационных и коммуникационных технологий	Устный опрос, тест3	Л3-Л5, Л7, М1, М3-М5, П5, П9, П11					
Тема 4 Технологии создания и преобразования информационных объектов	Устный опрос, тест4	Л1, Л3-Л7, М1, М4, М5, П3, П6, П9-П11					

2. Задания для текущего контроля, критерии оценки, эталоны ответов

2.1. Вопросы для подготовки к устным опросам по темам:

Тема 1 Информационная деятельность человека

- 1. Дисциплина, изучающая свойства информации, а также способы представления, накопления, обработки и передачи информации с помощью технических средств
- 2. Правовые нормы, относящиеся к информации.
- 3. Информационные ресурсы общества.
- 4. Этапы развития технических средств и информационных ресурсов, основные понятия.
- **5.** Политика и процессы, направленные на построение и развитие телекоммуникационной инфраструктуры, объединяющей территориально распределенные информационные ресурсы

Тема 2 Информация и информационные процессы

- 1. Способы представления, накопления обработки информации с помощью технических средств
- 2. Типы информационных процессов
- 3. Информационная культура общества
- 4. Что является графической формой представления математической информации
- 5. Что такое информатизация общества

Тема 3 Средства информационных и коммуникационных технологий

- 1. Программное и аппаратное обеспечение.
- 2. Классификация ПО.
- 3. Технологии передачи и обмена информацией.
- 4. Использование средств коммуникаций для межличностного общения

Тема 4 Технологии создания и преобразования информационных объектов

- 1. Какие программы входят в пакет MS Office
- 2. Основные способы преобразования (верстки) текста
- 3. Возможности динамических (электронных) таблиц.
- 4. Представление о программных средах компьютерной графики и черчения

Критерии оценки устного ответа.

Развернутый ответ студента должен представлять собой связное, логическипоследовательное сообщение на заданную тему, показывать его умение применять определения, правила в конкретных случаях.

Критерии оценивания:

- 1) полнота и правильность ответа;
- 2) степень осознанности, понимания изученного;
- 3) языковое оформление ответа.

Оценка «отлично» ставится, если студент полно излагает материал (отвечает на вопрос), дает правильное определение основных понятий; обнаруживает понимание материала, может обосновать свои суждения, применить знания на практике, привести необходимые примеры не только из учебника, но и самостоятельно составленные; излагает материал последовательно и правильно с точки зрения норм литературного языка.

Оценка «**хорошо**» ставится, если студент дает ответ, удовлетворяющий тем же требованиям, что и для оценки «отлично», но допускает 1-2 ошибки, которые сам же исправляет, и 1-2 недочета в последовательности и языковом оформлении излагаемого.

Оценка «удовлетворительно» ставится, если студент обнаруживает знание и понимание основных положений данной темы, нот излагает материал неполно и допускает неточности в определении понятий или формулировке правил; не умеет достаточно глубоко и доказательно обосновать свои суждения и привести свои примеры; излагает материал непоследовательно и допускает ошибки в языковом оформлении излагаемого.

Оценка «неудовлетворительно» ставится, если студент обнаруживает незнание большей части соответствующего вопроса, допускает ошибки в формулировке определений и правил, искажающие их смысл, беспорядочно и неуверенно излагает материал. Оценка **«2»** отмечает такие недостатки в подготовке, которые являются серьезным препятствием к успешному овладению последующим материалом.

2.2. Тесты

Тема 1 Информационная деятельность человека Тест 1 Вариант 1

Задание: Поставьте одинаковые цифры напротив наиболее подходящих друг другу понятий

Эщд	мине:	ив наиоолее подходищих друг другу понятии
1	Середина XVI века	Владение навыками использования различных технических устройств
2	Информационная культура человека	Открытие электричества
3	Информационное общество	Защищает от ущерба, связанного с порчей «персональной информации»
4	Конец XIX века	Развитие промышленности
5	Информационная культура	Инвестиции, цены, тарифы, заработная плата
6	Индустриальное общество	Увеличение доли умственного труда
7	70-е годы XX века	Персональный компьютер
8	Закон «О правовой охране программ для ЭВМ и баз данных»	Знание различных методов обработки информации
9	Первая информационная революция	Наказание за неправомерный доступ к компьютерной информации
10	Информационное неравенство	Реестр общественных объединений и религиозных организаций
11	Общая культура человека	Появление письменности
12	Закон «Об информации, информатизации и защите информации»	Знания, умения, профессиональные навыки
13	Информационные ресурсы социальной сферы	Книгопечатание
14	Информационные ресурсы Государ- ственной системы статистики	Проблема информационного общества
15	Государственная система правовой информации	Защищает авторские и имущественные права
16	Раздел уголовного кодекса «Преступление в сфере компьютерной информации»	Образование, медицина, службы занятости

Вариант 2

Задание:Поставьте одинаковые цифры напротив наиболее подходящих друг другу понятий

1	Первая информационная революция	Наказание за неправомерный доступ к						
1	Первая информационная революция	компьютерной информации						
2	Информационная культура человека	Открытие электричества						
2	Государственная система правовой ин-	Защищает авторские и имущественные						
3	формации	права						

4	Закон «О правовой охране программ для ЭВМ и баз данных»	Знание различных методов обработки информации
5	Индустриальное общество	Увеличение доли умственного труда
6	Информационные ресурсы социальной сферы	Книгопечатание
7	Раздел уголовного кодекса «Преступление в сфере компьютерной информации»	Образование, медицина, службы занятости
8	Информационное неравенство	Реестр общественных объединений и религиозных организаций
9	Информационные ресурсы Государ- ственной системы статистики	Проблема информационного общества
10	Конец XIX века	Развитие промышленности
11	Информационная культура	Инвестиции, цены, тарифы, заработная плата
12	70-е годы XX века	Персональный компьютер
13	Середина XVI века	Владение навыками использования различных технических устройств
14	Информационное общество	Защищает от ущерба, связанного с порчей «персональной информации»
15	Общая культура человека	Появление письменности
16	Закон «Об информации, информатизации и защите информации»	Знания, умения, профессиональные навыки

Вариант 3

Задание:Поставьте одинаковые цифры напротив наиболее подходящих друг другу понятий Закон «Об информации, информатизации Знания, умения, профессиональные 1 и защите информации» навыки Закон «О правовой охране программ для Знание различных методов обработки 2 ЭВМ и баз данных» информации 3 Общая культура человека Появление письменности Инвестиции, цены, тарифы, заработная 4 Информационная культура Раздел уголовного кодекса «Преступле-Образование, медицина, службы занято-5 ние в сфере компьютерной информации» сти Владение навыками использования раз-6 Середина XVI века личных технических устройств 7 Индустриальное общество Увеличение доли умственного труда Защищает от ущерба, связанного с пор-8 Информационное общество чей «персональной информации» Информационные ресурсы Государ-9 Проблема информационного общества ственной системы статистики Информационные ресурсы социальной 10 Книгопечатание сферы 11 Информационная культура человека Открытие электричества Реестр общественных объединений и ре-12 Информационное неравенство лигиозных организаций Наказание за неправомерный доступ к 13 Первая информационная революция компьютерной информации Государственная система правовой ин-Защищает авторские и имущественные 14 формации права

15	Конец XIX века	Развитие промышленности	
16	70-е годы XX века	Персональный компьютер	

Вариант 4

Задание: Поставьте одинаковые цифры напротив наиболее подходящих друг другу понятий

1	Информационные ресурсы Государ- ственной системы статистики	Проблема информационного общества
2	Индустриальное общество	Увеличение доли умственного труда
3	70-е годы XX века	Персональный компьютер
4	Раздел уголовного кодекса «Преступление в сфере компьютерной информации»	Образование, медицина, службы занятости
5	Информационное неравенство	Реестр общественных объединений и религиозных организаций
6	Закон «Об информации, информатизации и защите информации»	Знания, умения, профессиональные навыки
7	Середина XVI века	Владение навыками использования различных технических устройств
8	Государственная система правовой информации	Защищает авторские и имущественные права
9	Информационное общество	Защищает от ущерба, связанного с порчей «персональной информации»
10	Первая информационная революция	Наказание за неправомерный доступ к компьютерной информации
11	Информационная культура человека	Открытие электричества
12	Общая культура человека	Появление письменности
13	Закон «О правовой охране программ для ЭВМ и баз данных»	Знание различных методов обработки информации
14	Информационная культура	Инвестиции, цены, тарифы, заработная плата
15	Информационные ресурсы социальной сферы	Книгопечатание
16	Конец XIX века	Развитие промышленности

Тема 2 Информация и информационные процессы

Тест № 2

1) Ближе всего раскрывается смысл понятия «информация, используемая в бытовом общении» в утверждении:

- А) последовательность знаков некоторого алфавита;
- Б) сообщение, передаваемое в форме знаков ли сигналов;
- В) сообщение, уменьшающее неопределенность знаний;
- Г) сведения об окружающем мире, воспринимаемые человеком
- Д) сведения, содержащиеся в научных теориях

2) Информацию, не зависящую от личного мнения, называют:

- А) достоверной;
- Б) актуальной;
- В) объективной;
- Γ) полезной;
- Д) понятной

3) Информацию, отражающую истинное положение дел, называют:

- А) понятной;
- Б) достоверной;
- В) объективной;
- Γ) полной;
- Д) полезной

4) Информацию, существенную и важную в настоящий момент, называют:

- А) полезной;
- Б) актуальной;
- В) достоверной;
- Г) объективной;
- Д) полной

5) Информацию, дающую возможность, решать поставленную задачу, называют:

- А) понятной;
- Б) актуальной;
- В) достоверной;
- Г) полезной;
- Д) полной

6) Информацию, достаточную для решения поставленной задачи, называют:

- А) полезной;
- Б) актуальной;
- В) полной;
- Г) достоверной;
- Д) понятной

7) Информацию, изложенную на доступном для получателя языке, называют:

- А) полной;
- Б) полезной;
- В) актуальной;
- Г) достоверной;
- Д) понятной

8) По способу восприятия информации человеком различают следующие виды информации:

- А) текстовую, числовую, символьную, графическую, табличную и пр.;
- Б) научную, социальную, политическую, экономическую, религиозную пр.;
- В) обыденную, производственную, техническую, управленческую;
- Г) визуальную, звуковую, тактильную, обонятельную, вкусовую;
- Д) математическую, биологическую, медицинскую, психологическую и пр.

9) Известно, что набольший объем информации здоровый человек получает при помощи:

- А) органов слуха;
- Б) органов зрения;
- В) органов осязания;
- Г) органов осязания;
- Д) вкусовых рецепторов

10) Зрительной называют информацию, которая воспринимается человеком посредством органов (органа):

- А) зрения;
- Б) осязания:
- В) обоняния;
- Г) слуха;
- Д) восприятия вкуса

11) К зрительной можно отнести информацию, которую человек получает, воспринимая:

А) запах духов;

- Б) графические изображения;
- В) раскаты грома;
- Г) вкус яблока;
- Д) ощущение холода

12) Звуковой называют информацию, которая воспринимается посредством органов (органа):

- А) зрения;
- Б) осязания:
- В) обоняния;
- Г) слуха;
- Д) восприятия вкуса

13) К звуковой можно отнести информацию, которая передается посредством:

- А) переноса вещества;
- Б) электромагнитных волн;
- В световых волн;
- Γ) звуковых волн;
- Д) знаковых моделей

14) Тактильную информацию человек получает посредством:

- А) специальных приборов;
- Б) термометра;
- В) барометра;
- Г) органов осязания;
- Д) органов слуха.

15) По форме представления информации можно условно разделить на следующие виды:

- А) социальную, политическую, экономическую, техническую, религиозную и пр.;
- Б) техническую, числовую, символьную, графическую, табличную пр.;
- В) обыденную, научную, производственную, управленческую;
- Γ) визуальную звуковую, тактильную, обонятельную, вкусовую;
- Д) математическую, биологическую, медицинскую, психологическую.

16) Примером текстовой информации может служить:

- А) таблица умножения;
- Б) иллюстрация в книге;
- В) правило в учебнике родного языка;
- Г) фотография;
- Д) запись музыкального произведения

17) Примером политической информации может служить:

- А) правило в учебнике родного языка;
- Б) текст параграфа в учебнике литературы;
- В) статья о деятельности какой-либо партии в газете;
- Г) задание по истории в дневнике;
- Д) музыкальное произведение

18) Укажите лишний объект с точки зрения способа представления информации:

- А) школьный учебник;
- Б) фотография;
- В) телефонный разговор;
- Г) картина;
- Д) чертеж

19) К средствам хранения звуковой (аудио) информации можно отнести:

- А) учебник по истории;
- Б) вывеску названия магазина;
- В) журнал;
- Г) кассету с классической музыкой;

Д) газету

20) К средствам передачи звуковой (аудио) информации можно отнести:

- А) книга;
- Б) радио;
- В) журнал;
- Γ) плакат;
- Д) газета

21) Примером хранения числовой информации может служить:

- А) разговор по телефону;
- Б) иллюстрация в книге;
- В) таблица значений тригонометрических функций;
- Г) текст песни;
- Д) графическое изображение объекта

22) В учебнике по математике хранится информация:

- А) исключительно числовая;
- Б) графическая, звуковая и числовая;
- В) графическая, текстовая и звуковая;
- Γ) только текстовая;
- Д) текстовая, графическая, числовая

23) Носителем графической информации НЕ может являться:

- А) бумага;
- Б) видеопленка;
- В) холст;
- Г) дискета;
- Д) звук

24) По области применения информацию можно условно разделить на:

- А) текстовую и числовую;
- Б) визуальную и звуковую;
- В) графическую и табличную;
- Г) научную и техническую;
- Д) тактильную и вкусовую

25) В теории информации под информацией понимают:

- А) сигналы от органов чувств человека;
- Б) сведения, уменьшающие неопределенность;
- В) характеристику объекта, выраженную в числовых величинах;
- Г) отраженное разнообразие окружающей действительности;
- Д) сведения, обладающие новизной

26) В теории управления под информацией понимают:

- А) сообщения в форме знаков или сигналов;
- Б) сведения об окружающем мире и протекающих в нем процессах, полученные с помощью органов чувств;
- В) сведения, получаемые и используемые в целях сохранения, совершенствования и развития общественной или технической системы;
 - Г) сведения, обладающие новизной;
 - Д) сведения, уменьшающие неопределенность

27) В документалистике под информацией понимают:

- А) сведения, обладающие новизной;
- Б) сведения, полученные из внешнего мира с помощью органов чувств;
- В) сигналы, импульсы, коды, полученные с помощью специальных технических средств;
- Г) сведения, зафиксированные на бумаге в виде текста (в знаковой, символьной, графической или табличной форме);
 - Д) сообщение в форме звуковых сигналов

28) В железнодорожном билете указано:

Дата отправле- ния	Время отправления	№ поезда	Вагон №	Место №
29.12.03	19 часов 25 минут	23	15	11

Тогда отъезжающими может быть воспринято как информация с точки зрения семантической теории информации следующее сообщение диктора по радио на вокзале:

- А) «поезд № 23 «Москва Санкт-Петербург» отправляется с третьего пути»;
- Б) «поезд № 23 следует по маршруту «Москва Санкт-Петербург»;
- В) «поезд № 23 отправляется в путь в 19 часов 25 минут»;
- Г) «поезд № 23 отправляется в Санкт-Петербург в 19 часов 25 минут»;
- Д) «поезд № 23 отправляется 29 декабря в 19 часов 25 минут»;

29) В семантической теории под информацией принято понимать:

- А) сведения, полученные из внешнего мира с помощью органов чувств;
- Б) сигналы, импульсы, код, используемые в технических системах;
- В) сведения, зафиксированные на бумаге в виде текста (в текстовой, числовой, символьной, графической и табличной форме);
 - Г) сообщения в форме звуковых сигналов;
 - Д) сведения, обладающие новизной

30) В технике под информацией принято понимать:

- А) сведения об окружающем мире и протекающих в нем процессах, воспринимаемые человеком с помощью органов чувств;
- Б) сведения, зафиксированные на бумаге в виде текста (в знаковой, числовой, символьной, графической табличной формах);
 - В) сообщения, передаваемые в форме световых сигналов, электрических импульсов и пр;
 - Г) сведения, обладающие новизной;
 - Д) сведения и сообщения, передаваемые по радио или телевидению.

31) Ближе всего раскрывается смысл понятия «информация, используемая в бытовом общении» в утверждении:

- А) последовательность знаков некоторого алфавита;
- Б) сообщение, передаваемое в форме знаков ли сигналов;
- В) сообщение, уменьшающее неопределенность знаний;
- Г) сведения об окружающем мире, воспринимаемые человеком
- Д) сведения, содержащиеся в научных теориях

32) Информацию, не зависящую от личного мнения, называют:

- А) достоверной;
- Б) актуальной;
- В) объективной;
- Г) полезной;
- Д) понятной

33) Информацию, отражающую истинное положение дел, называют:

- А) понятной;
- Б) достоверной;
- В) объективной;
- Γ) полной;
- Д) полезной

34) Информацию, существенную и важную в настоящий момент, называют:

- А) полезной;
- Б) актуальной;
- В) достоверной;
- Г) объективной;
- Д) полной

35) Информацию, дающую возможность, решать поставленную задачу, называют:

- А) понятной;
- Б) актуальной;
- В) достоверной;
- Г) полезной;
- Д) полной

36) Информацию, достаточную для решения поставленной задачи, называют:

- А) полезной;
- Б) актуальной;
- В) полной;
- Г) достоверной;
- Д) понятной

37) Информацию, изложенную на доступном для получателя языке, называют:

- А) полной;
- Б) полезной;
- В) актуальной;
- Г) достоверной;
- Д) понятной

38) По способу восприятия информации человеком различают следующие виды информации:

- А) текстовую, числовую, символьную, графическую, табличную и пр.;
- Б) научную, социальную, политическую, экономическую, религиозную пр.;
- В) обыденную, производственную, техническую, управленческую;
- Г) визуальную, звуковую, тактильную, обонятельную, вкусовую;
- Д) математическую, биологическую, медицинскую, психологическую и пр.

39) Известно, что набольший объем информации здоровый человек получает при помощи:

- А) органов слуха;
- Б) органов зрения;
- В) органов осязания;
- Г) органов осязания;
- Д) вкусовых рецепторов

40) Зрительной называют информацию, которая воспринимается человеком посредством органов (органа):

- А) зрения;
- Б) осязания;
- В) обоняния;
- Г) слуха;
- Д) восприятия вкуса

ОТВЕТЫ

No	1	2	3	4	5	6	7	8	9	10	0 [11	12	13	14	1	.5	16	17	18	19)
ответ	Γ	В	б	б	Γ	В	Д	Γ	б	a	(5	Γ	Γ	Γ	б	5	В	В	В	Γ	
б																						
№	2	2	2	2	2	2	2	2	2	2	3	3	3	3	3	3	3	3	3	3	4	
	0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	
OT-	б	В	Д	Д	Γ	б	В	Γ	В	Д	В	Γ	В	б	б	Γ	В	Д	Γ	б	a	
вет																						

Тема 3 Средства информационных и коммуникационных технологий **Тест3**

1. В состав системного блока входят:

- а. Материнская плата
- b. Флешка
- с. Процессор
- d. Видеокарта
- е. Стример
- f. Оперативная память

2. Для чего нужна оперативная память?

- а. Для записи на нее больших объемов информации
- b. Для временного хранения информации при загрузке и работе компьютера
- с. Для долговременного хранения файлов
- d. Для переноса информации с компьютера на компьютер

3. У каких лазерных дисков ёмкость 650-700 Мбайт?

- a. DVD-R
- b. CD-R
- c. CD-ROM
- d. CD-RW
- e. DVD-RW

4. Устройство для резервного копирования данных с винчестера на магнитную ленту – это:

- а. Сканер
- b. Стример
- c. CD-ROM
- d. Blu-ray Disc

5. Какие диски подключаются к компьютеру через USB-порт?

- а. Внутренние винчестеры
- Внешние винчестеры
- c. DVD-RW

6. Виды персональных компьютеров (несколько вариантов):

- а. Портативный
- b. Компактный
- с. Карманный
- d. Настольный
- е. Плоский

7. Что такое коммутатор (хаб, свич)?

а. Специальное устройство для соединения нескольких компьютеров в локальную

- b. Устройство для выхода в Интернет
- с. Модем

сеть.

d. Принтер

8. Какие компьютерные сети бывают?

- а. Локальные
- b. Районные
- с. Глобальные
- d. Региональные
- е. Областные
- f. Городские

9. В какой топологии сети используется коммутатор (хаб, свич)?

а. Кольцо

- b. Звезла
- с. Ячеистая
- d. Шина

10. Операционная система — это:

- а. прикладная программа;
- b. система программирования;
- с. системная программа;
- d. текстовый редактор.

11. Драйвер — это:

- а. устройство компьютера;
- b. прикладная программа;
- с. программа для работы с устройствами компьютера;
- d. язык программирования.
- 12. Специально написанная программа небольшого размера, способная "внедряться" в тело какой-либо другой программы, перехватывать управление, чаще всего саморазмножаться с задачей прекращения работы компьютера или уничтожения информации это ...
 - а. вирус
 - b. антивирус
 - с. операционная система
 - d. файл
- 13. Какие вирусы для своего распространения используют протоколы и возможности локальных и глобальных компьютерных сетей?
 - а. сетевые вирусы
 - b. макро-вирусы
 - с. загрузочные вирусы
 - d. файловые фирусы
 - 14. Какие вирусы заражают загрузочный сектор гибкого диска или винчестера?
 - а. загрузочные
 - b. макро-вирусы
 - с. сетевые вирусы
 - d. трояны

15 Справочное приложение к программам

- 1. текстовый и графический редакторы, обучающие и тестирующие программы, игры
 - 2. набор игровых программ

Ответы на тест 3

Вопрос	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ответ	a,	В	b,	b	b	a,	a	a,	b	c	c	a	a	a	b
	c,		d			c, d		c, d							
	d, f														

Тема 4 Технологии создания и преобразования информационных объектов Тест 4

1. Как представлено изображение в растровой графике?

а. В виде совокупности точек (пикселей) и их координат

- b. В виде простейших фигур и их координат
- с. В виде совокупности квадратов и их координат
- d. В виде многоточий и их координат

2. Какие последовательные команды следует выполнить для изменения междустрочного интервала, отступов, табуляции?

- а. Главная Абзац
- b. Формат Шрифт
- с. Главная Список
- d. Формат Стили и форматирование

3. Документы, созданные в программе Word, имеют расширение ...

- a. .doc, .docx
- b. .ppt, .pptx
- c. .bmp
- d. .txt

4. Выберите верную запись формулы для электронной таблицы:

- a. =?C3+4*D4
- b. C3=C1+2*C2
- c. A5B5+23
- d. = A2*A3-A4

5. Как набрать формулу для расчета в программе Excel?

- а. выделить ячейку, вписать формулу
- b. выделить ячейку, ввести сразу ответ
- с. выделить ячейку, набрать знак "=", написать формулу, не пропуская знаки операций

6. Этапы создания базы данных (указать порядок создания)

- а. Создание структуры БД
- b. Ввод записей
- с. Проектирование БД

7. Что такое система управления базами данных (СУБД)?

- а. Файл
- b. программное обеспечение, позволяющее создавать БД, обновлять хранимую информацию и обеспечивать удобный доступ к информации с целью просмотра и поиска
- с. база данных
- d. антивирусная программа

8. Какова основная цель медицинской информатики?

- а. создание интернет-сайтов в сфере здравоохранения
- b. оптимизация информационных процессов в медицине и здравоохранении за счет использования компьютерных технологий, обеспечивающая повышение качества охраны здоровья населения
- с. помощь в создании новой современной аппаратуры для медицинских обследований

9. Назовите преимущества электронных карт амбулаторных и стационарных больных перед рукописными

- а. удобочитаемость и точность
- b. сокращение времени на оформление документов за счет уменьшения набора текста при использовании шаблонов, выбора из предложенного списка, автозаполнения
- с. быстрый доступ (сколь угодно большое число медработников одновременно могут использовать информацию);
- d. оптимизация поиска необходимой информации (по фамилии, дате, диагнозу и т.д.)
- е. возможность напоминания и сигналов

- f. все варианты
- 10. Автоматизированное рабочее место (АРМ) это ...
 - а. специально разработанная программа
 - b. рабочее место сотрудника
- с. комплекс средств вычислительной техники и программного обеспечения, располагающийся непосредственно на рабочем месте сотрудника и предназначенный для автоматизации его работы в рамках специальности

11. Что такое база данных (БД)?

- а. специальным образом написанная программа, для быстрого поиска информации
- b. представленная в объективной форме совокупность данных, систематизированных таким образом, чтобы эти данные могли быть найдены и обработаны с помощью ЭВМ
- с. поименованная область на диске

12. Что можно назвать базой данных?

- а. Текст параграфа
- b. Телефонный справочник
- с. Социальная сеть (одноклассники, вконтакте и т.д.)
- d. Открытка

13. В каком пункте панели меню программы Word можно найти команду Сохранить?

- а. Файл
- b. Сервис
- с. Правка
- d. Формат

14. С помощью каких команд можно изменить тип шрифта в выделенном тексте документа программы Word?

- а. Главная Шрифт
- b. Сервис Настройка Вкладка Панель инструментов Формат
- с. Правка Вкладка
- d. Формат Абзац

15. После ввода числа в клетку Вы наблюдаете следующую картину (######). В чем причина такой ситуации?

- а. не хватает ширины клетки, чтобы показать введенное число;
- b. число введено с ошибкой;
- с. число введено в защищенную клетку

Ответы на тест4

Вопрос	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ответ	a	a	a	d	c	a,	b	b	f	c	b	b, c	a	a	a
						b,c									

Критерии оценки тестов:

- оценка «отлично» при 91-100%;
- оценка «хорошо» при 81-90 %;
- оценка «удовлетворительно» при 60-80%;
- оценка «неудовлетворительно» менее 60%.

2.3 Проверочные работы Тест № 2 Информация и информационные процессы

Проверочная работа 1

1 1. $89342_{10} \rightarrow X_6 \rightarrow X_{10}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$2.7394,364_{10} \rightarrow X_4 \rightarrow X_{10}$	$2.7393,464_{10} \rightarrow X_3 \rightarrow X_{10}$
$3.365,251_7 \rightarrow X_9$	$3.365,251_8 \rightarrow X_9$
$4.30123_4 \rightarrow X_8$	$4.30233_8 \rightarrow X_4$
$5.11010101,000101_2 \rightarrow X_{16} \rightarrow X_2$	$5.11010111,010101_2 \rightarrow X_8 \rightarrow X_2$
6.1110001110101000111	6.1110001110101000111
<u>+110001000011110001</u>	<u>+1100010110111110001</u>
7.1110011100010101001	7.1110001110011010101
× <u>1001</u>	× <u>1001</u>
$2 \ 1.891342_{10} \rightarrow X_4 \rightarrow X_{10}$	17 1. $89342_{10} \rightarrow X_6 \rightarrow X_{10}$
$2.7344,324_{10} \rightarrow X_5 \rightarrow X_{10}$	$2.7394,364_{10} \rightarrow X_4 \rightarrow X_{10}$
$3.365,251_7 \rightarrow X_9$	$3.365,251_7 \rightarrow X_9$
$4.30123_{16} \rightarrow X_8$	$4.30123_4 \rightarrow X_8$
$5.11010111,010101_2 \rightarrow X_{16} \rightarrow X_2$	$5.11010101,000101_2 \rightarrow X_{16} \rightarrow X_2$
6.1110001110101100111	6.1110001110101000111
<u>+110001000010110101</u>	<u>+110001000011110001</u>
7.11100011101010111001	7.1110011100010101001
× <u>101</u>	× <u>1001</u>
2 1 20241 \(\text{\tinit}}\text{\tilite\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\ti}}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\ti}\text{\text{\text{\text{\text{\text{\text{\text{\text{\tint{\tilite\text{\text{\text{\text{\text{\text{\text{\tilit{\text{\texi\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tin}\tilit{\text{\text{\text{\text{\text{\text{\text{\tilit}\tilit{\text{\text{\text{\text{\text{\text{\tilit{\texi}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tilit{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\texi}\text{\text{\text{\text{\text{\text{\texi}\til\tilit{\text{\text{\texi}\tilit{\text{\text{\text{\tilit{\text{\texi}\til\text{\tilit{\text{\tilit{\text{\ter	10 1 001242 \(\Delta \) \(\Delta \) \(\Delta \)
$3 \ 1.39341_{10} \rightarrow X_7 \rightarrow X_{10}$	$181.891342_{10} \rightarrow X_4 \rightarrow X_{10}$
$2.7314,354_{10} \rightarrow X_6 \rightarrow X_{10}$	$2.7344,324_{10} \rightarrow X_5 \rightarrow X_{10}$
$3.325,451_6 \rightarrow X_8$	$3.365,251_7 \rightarrow X_9$
$4.301573_8 \rightarrow X_4$	$4.30123_{16} \rightarrow X_8$
$5.11110101,010101_2 \rightarrow X_8 \rightarrow X_2$	$5.11010111,010101_2 \rightarrow X_{16} \rightarrow X_2$
6.1111011110101100111	6.1110001110101100111
$\phantom{00000000000000000000000000000000000$	<u>+110001000010110101</u>
7.111100110010101011	7.11100011101010111001
× <u>110</u>	× 101
4 1 90242 A V V V	10 1 20241 A V V V
$4 1.89242_{10} \rightarrow X_5 \rightarrow X_{10}$	19 1.39341 ₁₀ \rightarrow X ₇ \rightarrow X ₁₀
$2.7393,464_{10} \rightarrow X_3 \rightarrow X_{10}$	$2.7314,354_{10} \rightarrow X_6 \rightarrow X_{10}$
$3.365,251_8 \rightarrow X_9$	$3.325,451_6 \rightarrow X_8$
$4.30233_8 \rightarrow X_4$	4.301573 ₈ → X ₄
$5.11010111,010101_2 \rightarrow X_8 \rightarrow X_2$	$5.11110101,010101_2 \rightarrow X_8 \rightarrow X_2$
, and the second	1
6.1110001110101000111	6.1111011110101100111
+110001011011110001	$\phantom{00000000000000000000000000000000000$
7.11100011100110101001	7.11110011001010111
× <u>1001</u>	× <u>110</u>
5 1 90242 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	20 1 90242 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
$5 \ 1. \ 89342_{10} \rightarrow X_6 \rightarrow X_{10}$	$20 \ 1.89242_{10} \rightarrow X_5 \rightarrow X_{10}$
$2.7394,364_{10} \rightarrow X_4 \rightarrow X_{10}$	$2.7393,464_{10} \rightarrow X_3 \rightarrow X_{10}$
$3.365,251_7 \rightarrow X_9$	$3.365,251_8 \rightarrow X_9$
$4.30123_4 \rightarrow X_8$	$4.30233_8 \rightarrow X_4$
$5.11010101,000101_2 \rightarrow X_{16} \rightarrow X_2$	$5.11010111,010101_2 \rightarrow X_8 \rightarrow X_2$
5.11010101,0001012 / Alio / AL	J.110101111,010101/ //18 //1/

6.1110001110101000111	6.1110001110101000111
+110001000011110001	+110001011011110001
7.1110011100010101001	7.1110001110011010101
×1001	× <u>1001</u>

Критерии оценки проверочной работы

- оценка «отлично» при 91-100%;
- оценка «хорошо» при 81-90 %;
- оценка «удовлетворительно» при 60-80%;
- оценка «неудовлетворительно» менее 60%.

Критерии оценки решения

Оценка осуществляется по следующим критериям:

- знание основных теоретических положений;
- умение самостоятельно анализировать;
- -умение правильно производить расчеты и анализировать полученные результаты;
- -умение использовать теоретические знания для комплексного решения поставленных залач.

Оценка «отлично» - если обучающийся выполнил работу в полном объеме с соблюдением необходимой последовательности действий. Использует теоретические знания для комплексного решения поставленных задач. Свободно владеет терминологией, в ответе правильно и аккуратно выполняет все записи, делает выводы, убедительно аргументирует собственную позицию.

Оценка «хорошо» если обучающийся выполнил работу в полном объеме с соблюдением необходимой последовательности действий. Использует теоретические знания для комплексного решения поставленных задач. Свободно владеет терминологией, в ответе правильно выполняет все записи, однако не все выводы достаточно аргументируются. Имеются недоработки в оформлении работы, 1-2 неточности или арифметические ошибки, в целом не повлиявшие на правильность выводов.

Оценка «удовлетворительно»- если обучающийся выполнил работу не полностью, в ходе проведения работы были допущены ошибки. Испытывает затруднения с выводами, нет аргументированных выводов, в ответе нарушается последовательность изложения материала. Слабо отвечает (не отвечает) на вопросы преподавателя.

Оценка «неудовлетворительно» выставляется в том случае, если обучающийся излагает материал непоследовательно, не демонстрирует знания базовых нормативных актов, не может сделать выводы, допущены грубые ошибки в решении задач или объем выполненной части работы не позволяет сделать правильных выводов.

2.4 Критерии оценки практических работ:

Практические работы студента оцениваются по пятибалльной шкале:

Оценка «отлично» ставится в том случае, если студент:

- свободно применяет полученные знания при выполнении практических заданий;
- выполнил работу в полном объеме с соблюдением необходимой последовательности действий;
- в письменном отчете по работе правильно и аккуратно выполнены все записи;
- при ответах на контрольные вопросы правильно понимает их сущность, дает точное определение и истолкование основных понятий, использует специальную терминологию дисциплины, не затрудняется при ответах на видоизмененные вопросы, сопровождает ответ примерами.

Оценка «хорошо» ставится, если:

- выполнены требования к оценке «отлично», но допущены 2-3 недочета при выполнении практических заданий и студент может их исправить самостоятельно или при небольшой помощи преподавателя;
- в письменном отчете по работе делает незначительные ошибки;
- при ответах на контрольные вопросы не допускает серьезных ошибок, легко устраняет отдельные неточности, но затрудняется в применении знаний в новой ситуации, приведении примеров.

Оценка «удовлетворительно» ставится, если:

- практическая работа выполнена не полностью, но объем выполненной части позволяет получить правильные результаты и выводы;
- в ходе выполнения работы студент продемонстрировал слабые практические навыки, были допущены ошибки;
- студент умеет применять полученные знания при решении простых задач по готовому алгоритму;
- в письменном отчете по работе допущены ошибки;
- при ответах на контрольные вопросы правильно понимает их сущность, но в ответе имеются отдельные пробелы и при самостоятельном воспроизведении материала требует дополнительных и уточняющих вопросов преподавателя.

Оценка «неудовлетворительно» ставится, если:

- практическая работа выполнена не полностью и объем выполненной работы не позволяет сделать правильных выводов, у студента имеются лишь отдельные представления об изученном материале, большая часть материала не усвоена;
- в письменном отчете по работе допущены грубые ошибки, либо он вообще отсутствует:
- на контрольные вопросы студент не может дать ответов, так как не овладел основными знаниями и умениями в соответствии с требованиями программы.

Перечень учебных изданий, Интернет-ресурсов, дополнительной литературы

- 1.Цветкова М.С., Хлобыстова И.Ю. Информатика: учеб. для студ. учреждений сред.проф. образования/ М.С. Цветкова, И.Ю. Хлобыстова.- 5-е изд., стер. М.: ИЦ Академия, 2018.- 352 с.: ил., 8 с. цв. вкл.
- 2. Гальченко, Г. А. Информатика для колледжей [Электронный ресурс] : учебное пособие. Общеобразовательная подготовка / Г. А. Гальченко, О. Н. Дроздова. Электрон. текстовые данные. Ростов-на-Дону : Феникс, 2017. 382 с. 978-5-222-27454-5. Режим доступа: http://www.iprbookshop.ru/59322.html

3. Задания для промежуточной аттестации, критерии оценки, эталоны ответов

 Φ ОС предназначен для контроля и оценки промежуточных результатов освоения учебной дисциплины ПД.1«Информатика».

Форма промежуточной аттестации: дифференцированный зачет.

Промежуточная аттестация проходит в письменной форме. Преподаватель может задавать устные уточняющие вопросы обучающемуся при оценке работы.

3.1. Вопросы для подготовки к дифференцированному зачету

- 1 Информация и информационные процессы в природе, обществе, техники. Информационная деятельность человека.
- 2 Информационные процессы и управление. Обратная связь.
- 3 Язык и информация. Естественные и формальные языки.
- 4 Двоичная система счисления. Запись чисел в двоичной системе счисления.
- 5 Различные системы счисления

- 6 Кодирование информации. Способы кодирования.
- 7 Качественные и количественные характеристики информации. Свойства информации (новизна, актуальность, достоверность и др.). Единицы измерения информации.
- 8 Основные понятия алгебры логики
- 9 Алгоритм. Свойства алгоритма. Возможность автоматизации интеллектуальной деятельности человека.
- 10 Операционная система компьютера (назначение, состав, загрузка).
- 11 Представление и кодирование информации с помощью знаковых систем. Алфавитный подход к определению количества информации.
- 12 Выполнение арифметических операций в двоичной системе счисления.
- 13 Информационное моделирование. Основные типы информационных моделей (табличные, иерархические, сетевые).
- 14 Понятие алгоритма. Свойства алгоритма.
- 15 Способы записи алгоритмов.
- 16 Виды алгоритмов и основные принципы составления алгоритмов
- 17 Основные алгоритмические конструкции.
- 18 Основные сведения о языке Бейсик.
- 19 Операторы языка Бейсик.
- 20 Графический режим языка программирования Бейсик
- 21 Текстовый редактор. Назначение и основные функции.
- 22 Двоичное кодирование текстовой информации. Различные кодировки кириллицы.
- 23 Графические возможности текстового редактора
- 24 Электронные таблицы. Назначение и основные функции.
- 25 Базы данных. Назначение и основные функции.
- 26 Основные объекты СУБД: таблицы, формы, запросы, отчеты.
- 27 СУБД (модели, виды). Использование СУБД в различных предметных областях
- 28 Создание презентаций
- 29 Создание публикаций
- 30 Создание мультимедийной презентации
- 31 . Презентационный пакет. Назначение и основные функции.
- 32 Цифровое оборудование для создания графических и мультимедийных объектов.

3.2. Задание для промежуточной аттестации

Условия проведения дифференцированного зачета:

Дифференцированный зачет проводится у всей группы одновременно в форме тестирования. Количество вариантов- 4.

На выполнение заданий дифференцированного зачета отводится 90 минут.

ТЕСТИРОВАНИЕ

4 варианта по 11 вопросов. 1-5 вопросы — необходимо выбрать один правильный ответ; 6-7 — решить примеры и задачи по количеству информации; 8 — декодировать фразу; 9 — зарисовать иерархическую файловую структуру; 10 — решить примеры по системам счисления; 11 — решить примеры по MicrosoftExcel.

ВАРИАНТ 1

- 1. Информацию, отражающую истинное положение дел, называют
- А) понятной; В) объективной;
- Б) актуальной; Г) достоверной.
- 2. К основным информационным процессам не относится
- А) хранение; В) обработка;
- Б) удаление; Г) передача.
- 3. Световое перо относится к:
- А) устройствам ввода информации;
- Б) устройствам вывода информации.
- 4. С помощью какого способа выравнивания напечатан ниже приведенный текст: Государственное бюджетное профессиональное образовательное учреждение «Нижегородский промышленно-технологический техникум» г. Нижний Новгород
- А) по левому краю; В) по правому краю;
- Б) по центру; Γ) по ширине.
- 5. Дайте определение линейному алгоритму:
- А) Алгоритм, в котором команды выполняются последовательно одна за другой;
- Б) Алгоритм, в котором та или иная серия команд выполняется в зависимости от истинности условия;
- В) Алгоритм, в котором выполняется одна из нескольких последовательностей команд при истинности соответствующего условия;
- Г) Алгоритм, в котором серия команд выполняется многократно
- 6. Заполните пропуски числами: A) _____ Кбайт = ____ байт = 12288 бит; Б) 2 Мбайт = ___ Кбайт = __ байт
- 7. "Петя! Ты сегодня пойдешь в кино?" спросил я друга. "Да" ответил Петя. Сколько информации я получил?

- 8. Шифр Цезаря реализует следующее преобразование текста: каждая буква исходного текста заменяется следующей после нее буквой в алфавите, который считается написанным по кругу. Используя этот шифр, декодируйте следующую фразу: ТЛБЗЙ НОЁ, ЛБЛПК Ф УЁВА ЛПНРЭЯУЁС, Й А ТЛБЗФ, ЛУП УЬ.
- 9. Зарисуйте иерархическую файловую структуру. В корневом каталоге диска D:\ имеется один каталог 1-го уровня (Программы), а в нем три каталога 2-го уровня (Word, Excel и PowerPoint). В каталоге Excel имеется два каталога (Таблицы и Отчеты). При этом в каталоге Отчеты имеются три файла 2010.txt, 2011.txt и 2012.txt, а в каталоге PowerPoint два файла (Презентация1.txt и Презентация2.txt). Определить и записать путь к файлу 2010.txt.

10. Заполните пустые клетки таблицы:

Десятичное число	Системы счисления			
	Двоичное число (до 3 знаков)	Восьмеричное число (до 3 знаков)	Шестнадцатеричное число (до 3 знаков)	
1253,1210				

11. Для данной электронной таблицы вычислите результат функций:

	A	В
1	1	7
2	2	6
3	3	5
4	4	4

- A) СУММ(A1:A4);
- Б) СРЗНАЧ(В1:В4).

ВАРИАНТ 2

- 1. Информацию, достаточную для решения поставленной задачи, называют
- А) актуальной; В) полной;
- Б) объективной; Г) достоверной.
- 2. Для обозначения процесса передачи информации используют схему
- А) входная информация обмен информации входная информация;
- Б) источник информации приемник информации канал связи;
- В) входная информация передача информации входная информация;
- Г) источник информации канал связи приемник информации.
- 3. Дигитайзер относится к:
- А) устройствам ввода информации;
- Б) устройствам вывода информации.
- 4. С помощью какого способа выравнивания напечатан ниже приведенный текст: Государственное бюджетное профессиональное образовательное учреждение «Нижегородский промышленно-технологический техникум» г. Нижний Новгород
- А) по левому краю; В) по правому краю;
- Б) по центру; Г) по ширине.
- 5. Дайте определение алгоритмической структуре "ветвление":

- А) Алгоритм, в котором команды выполняются последовательно одна за другой;
- Б) Алгоритм, в котором та или иная серия команд выполняется в зависимости от истинности условия;
- В) Алгоритм, в котором выполняется одна из нескольких последовательностей команд при истинности соответствующего условия;
- Г) Алгоритм, в котором серия команд выполняется многократно
- 6. Заполните пропуски числами:

A)	Кбайт =	= 8192 байт =	бит;
Б) 3.5 Г(5айт =	Мбайт =	Кбайт

- 7. В коробке лежат 16 кубиков. Все кубики разного цвета. Сколько информации несет сообщение о том, что из коробки достали синий кубик?
- 8. Шифр Цезаря реализует следующее преобразование текста: каждая буква исходного текста заменяется следующей после нее буквой в алфавите, который считается написанным по кругу. Используя этот шифр, декодируйте следующую фразу: ЕБСЖОПНФ ЛПНРЭЯУЁСФ Г ТЙТУЁНОЬК ВМПЛ ОЁ ИБДМАЕЬГБЯУ.
- 9. Зарисуйте иерархическую файловую структуру. В корневом каталоге диска С:\ имеется два каталога 1-го уровня (Метрополитен и Н.Новгород); в папке Н.Новгород одна папка 2-го уровня Улицы, а в ней пять файлов (БПокроская.txt, Рождественнаякая.txt, МЯмская.txt, Белинского.txt, Гагарина.txt). В папке Метрополитен одна папка 2-го уровня Станции, а в ней четыре файла (Горьковская.txt, Московская.txt, Пролетарская.txt, Кировская.txt). Определить и записать путь к файлу Горьковская.txt.

10. Заполните пустые клетки таблицы:

Десятичное число	Системы счисления			
	Двоичное число (до 3 знаков)	Восьмеричное число (до 3 знаков)	Шестнадцатеричное число (до 3 знаков)	
1472,17 ₁₀				

11. Для данной электронной таблицы вычислите результат функций:

	A	В
1	6	2
2	8	6
3	3	4
4	4	4

A) СУММ(A1:A3);

Б) СРЗНАЧ(В1:В3).

TECT

ВАРИАНТ 3

- 1. Информацию, выраженную на доступном для получателя языке, называют
- А) понятной; В) объективной;
- Б) адекватной; Г) доступной.
- 2. Информационный процесс, в результате которого всегда получают новую информацию

- А) обработка; В) хранение;
- Б) передача; Г) получение.
- 3. Плоттер относится к:
- А) устройствам ввода информации;
- Б) устройствам вывода информации.
- 4. С помощью какого способа выравнивания напечатан ниже приведенный текст: Государственное бюджетное профессиональное образовательное учреждение «Нижегородский промышленно-технологический техникум» г. Нижний Новгород
- А) по левому краю; В) по правому краю;
- Б) по центру; Γ) по ширине.
- 5. Дайте определение алгоритмической структуре "выбор":
- А) Алгоритм, в котором команды выполняются последовательно одна за другой;
- Б) Алгоритм, в котором та или иная серия команд выполняется в зависимости от истинности условия;
- В) Алгоритм, в котором выполняется одна из нескольких последовательностей команд при истинности соответствующего условия;
- Г) Алгоритм, в котором серия команд выполняется многократно.
- 6. Заполните пропуски числами:

A)	Мбайт =	Кбайт =	= 4194304 байт
Б)	Гбайт = 4 6 0	8 Мбайт =	Кбайт.

- 7. Группа школьников пришла в бассейн, в котором 4 дорожки для плавания. Тренер сообщил, что группа будет плавать на дорожке номер 3. Сколько информации получили школьники из этого сообщения?
- 8. Шифр Цезаря реализует следующее преобразование текста: каждая буква исходного текста заменяется следующей после нее буквой в алфавите, который считается написанным по кругу. Используя этот шифр, декодируйте следующую фразу:

Г ТЙМЙЛПОПГФЯ ЕПМЙОФ ТП ТГПЙН ЛПНРЭЯУЁСПН ОЁ ЁИЕАУ.

- 9. Зарисуйте иерархическую файловую структуру. В корневом каталоге диска D:\ имеется один каталог 1-го уровня (Специальность), а в нем − три каталога 2-го уровня (ПСО, ТО, ТМ). В каталоге ПСО имеется шесть файлов 16.txt, 17.txt, 26.txt, 27.txt, 36.txt, 37.txt. В каталоге ТМ − четыре файла (14.txt, 24.txt, 34.txt, 44.txt). Определить и записать путь к файлу 36.txt.
- 10. Заполните пустые клетки таблицы:

Десятичное число	Системы счисления			
	Двоичное число (до 3 знаков)	Восьмеричное число (до 3 знаков)	Шестнадцатеричное число (до 3 знаков)	
1386,13 ₁₀				

11. Для данной электронной таблицы вычислите результат функций:

	A	В
1	1	9

2	4	5
3	4	5
4	4	1

A) СУММ(A2:A4);

Б) СРЗНАЧ(В2:В3).

ТЕСТ ВАРИАНТ 4

- 1. Информацию, не зависящую от личного мнения кого-либо, называют
- А) понятной; В) объективной;
- Б) адекватной; Г) достоверной.
- 2. Физическая среда, непосредственно хранящая информацию, это
- А) источник; В) приемник;
- Б) носитель; Г) хранилище.
- 3. Трекбол относится к:
- А) устройствам ввода информации;
- Б) устройствам вывода информации.
- 4. С помощью какого способа выравнивания напечатан ниже приведенный текст: Государственное бюджетное профессиональное образовательное учреждение «Нижегородский промышленно-технологический техникум» г. Нижний Новгород
- А) по левому краю; В) по правому краю;
- Б) по центру; Г) по ширине.
- 5. Дайте определение алгоритмической структуре "цикл":
- А) Алгоритм, в котором команды выполняются последовательно одна за другой;
- Б) Алгоритм, в котором та или иная серия команд выполняется в зависимости от истинности условия;
- В) Алгоритм, в котором выполняется одна из нескольких последовательностей команд при истинности соответствующего условия;
- Г) Алгоритм, в котором серия команд выполняется многократно.
- 6. Заполните пропуски числами:
 A) 7 Кбайт = _____ байт = _____ бит;
 Б) Гбайт = 1536 Мбайт = Кбайт.
- 7. На железнодорожном вокзале 8 путей отправления поездов. Вам сообщили, что ваш поезд прибывает на четвертый путь. Сколько информации вы получили?
- 8. Шифр Цезаря реализует следующее преобразование текста: каждая буква исходного текста заменяется следующей после нее буквой в алфавите, который считается написанным по кругу. Используя этот шифр, декодируйте следующую фразу:

ГЙСФТПГ ВПАУЭТА – Г ЙОУЁСОЁУ ОЁ ЦПЕЙУЭ.

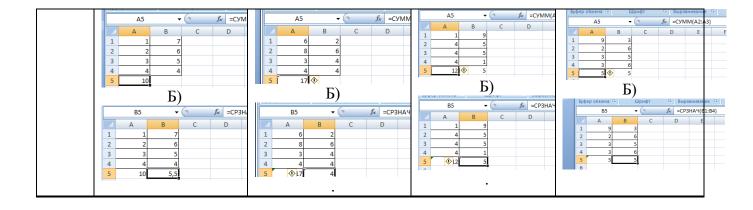
9. Зарисуйте иерархическую файловую структуру. В корневом каталоге диска C:\ имеются два каталога 1-го уровня (Дневное отделение и Вечернее отделение), а в каталоге Дневное отделение — два каталога 2-го уровня (Справки и Дипломы). При этом в каталоге Справки имеется

три файла Иванов.txt, Петров.txt, Сидоров.txt, а в каталоге Дипломы – два файла Смирнов.txt и Соколов.txt. Определить и записать путь к файлу Смирнов.txt.

10. Заполните пустые клетки таблицы:

Десятичное число	Системы счисления			
	Двоичное число (до 3 знаков)	Восьмеричное число (до 3 знаков)	Шестнадцатеричное число (до 3 знаков)	
1317,1510				

11. Для данной электронной таблицы вычислите результат функций:


	Α	В
1	9	3
2	2	6
3	3	5
4	3	6

A) СУММ(A2:A3);

Б) СРЗНАЧ(В1:В4).

3.3. Эталон ответа

Во-	Вариант 1	Вариант 2	Вариант 3	Вариант 4
просы				
1	Γ	В	A	В
2	Б	Γ	A	Б
3	A	A	Б	A
4	Γ	A	В	Б
5	A	Б	В	Γ
6	А) 1,5 Кбайт = 1536	А) 8 Кбайт = 8192	А) 4 Мбайт = 4097	А) 7 Кбайт = 7168
	байт = 12288 бит;	байт = 65536 бит;	Кбайт = 4194304	байт = 57344 бит;
	Б) 2 Мбайт = 2048	Б) 3,5 Гбайт = 3584	байт;	Б) 1,5 Гбайт = 1536
	Кбайт = 2097152	Мбайт = 3670016	Б) 4,5 Гбайт = 4608	Мбайт = 1572864
	байт.	Кбайт.	Мбайт = 4718592	Кбайт.
			Кбайт.	
7	1 бит	4 бита	2 бита	3 бита
8	Скажи мне, какой у	Дарёному компьютеру	В Силиконовую	Вирусов бояться –
	тебя компьютер, и я	в системный блок не	долину со своим	в интернет не хо-
	скажу кто ты.	заглядывают.	компьютером не	дить.
			ездят.	
9	10011100101,0002	10111000000,0012	10101101010,0012	10100100101,0012
	2345,0758	2700,1278	2552,1028	2445,1148
	4e5,1ea ₁₆	5c0,2в8 ₁₆	56a,214 ₁₆	525,266 ₁₆
10	A) 10;	A) 17;	A) 12;	A) 5;
	Б) 5,5.	Б) 4.	Б) 3,666667.	Б) 5.
11	A)	A)	A)	A)

Критерии оценки

- оценка «**отлично**» выставляется студенту, если ответ полный и правильный на основании изученного материала;
- практическая часть выполнена верно, приведено полное правильное решение, включающее правильный ответ и полное верное объяснение с указанием применяемых формул, правил.
- ответ самостоятельный;
- оценка «**хорошо**» выставляется студенту, если ответ полный и правильный на основании изученного материала;
- материал изложен, при этом допущены несущественные ошибки, исправленные по требованию преподавателя;
- практическая часть вызвало небольшие затруднения; ответ получен, решение в целом верное, может содержать небольшие вычислительные погрешности, в результате которых ответ может быть неточным.
- оценка **«удовлетворительно»** выставляется студенту, если ответ полный, но при этом допущено несколько несущественных ошибок, не влияющих на смысл ответа или ответ неполный;
- практическая часть выполнена в целом верно, но допущены ошибки в вычислениях;
- -оценка «**неудовлетворительно**» выставляется студенту, если имеются существенные ошибки в ответе или неточности, искажающие смысл ответа. Практическая часть не выполнена.